10.7 DIN EN ISO 898-1 | **DIN EN 20898-2** Strength values of screws / nuts

## Strength values of screws

The identification of the tensile strength class for standard steel screws consists of two figures separated by a point:

- the first figure, called the strength index, is equal to  $^{1}/_{100}$  of the tensile strength R<sub>m</sub> in N/mm<sup>2</sup>
- the second figure, known as the yield point ratio, is 10 times the ratio of the yield point  $R_{\text{e}}$  or the substitute yield point  $R_{\text{p}}$  0.2 to the nominal tensile strength  $R_{\text{m}}$ . If the tensile strength  $R_{\rm m}$  is multiplied by  $^{1}/_{10}$  of the second figure, the result is the yield point  $R_{\rm e.}$

## Example:

Screw of the strength class 5.8, strength index = 5, yield point ratio = 8

Tensile strength  $R_m = Strength index x 100 = 5 N/mm^2 x 100 = 500 N/mm^2$ 

Yield point  $R_e$  = Tensile strength  $R_m \times 0.8 = 500 \text{ N/mm}^2 \times 0.8 = 400 \text{ N/mm}^2$ 

| Material characteristics                             | Strength class |     |     |     |     |      |      |  |
|------------------------------------------------------|----------------|-----|-----|-----|-----|------|------|--|
|                                                      | 4.6            | 5.6 | 5.8 | 6.8 | 8.8 | 10.9 | 12.9 |  |
| Tensile strength R <sub>m</sub> in N/mm <sup>2</sup> | 400            | 500 | 500 | 600 | 800 | 1000 | 1200 |  |
| Yield point R <sub>e</sub> in N/mm <sup>2</sup>      | 240            | 300 | 400 | 480 | 640 | 900  | 1080 |  |
| Elongation at break A in %                           | 22             | 20  | 10  | 8   | 12  | 9    | 8    |  |

If, for standard elements, simply one figure is given, e.g. "strength class 5", it is equal to the strength index and must thus be correspondingly handled.

## Strength values of nuts

The identification of the strength class for standard steel nuts consists of only one figure. It gives information about the test stress  $S_p$  on a hardened test mandrel and is expressed as the ratio  $^1/_{100}$ The test stress S<sub>p</sub> is equal in principle to the tensile strength R<sub>m</sub>.

## Example:

Nut of strength class 6

Tensile strength  $R_m$  = Strength index x 100 = 6 N/mm<sup>2</sup> x 100 = 600 N/mm<sup>2</sup>

| Test stress S <sub>p</sub> in N/mm <sup>2</sup> for threading |      | Strengt | Strength class |     |      |      |  |  |  |
|---------------------------------------------------------------|------|---------|----------------|-----|------|------|--|--|--|
|                                                               |      | 5       | 6              | 8   | 10   | 12   |  |  |  |
|                                                               | M 4  | 520     | 600            | 800 | 1040 | 1150 |  |  |  |
| above M 4                                                     | M 7  | 580     | 670            | 855 | 1040 | 1150 |  |  |  |
| above M 7                                                     | M 10 | 590     | 680            | 870 | 1040 | 1160 |  |  |  |
| above M 10                                                    | M 16 | 610     | 700            | 880 | 1050 | 1190 |  |  |  |
| above M 16                                                    | М 39 | 630     | 720            | 920 | 1060 | 1200 |  |  |  |

Nuts and screws of the same strength classes such as Nut 8 - Screw 8.8 can be loaded together up to the yield point of the screw without damaging the nut.

